2.1

Given that $\mathrm{P}(\mathrm{A})=2 / 3, \mathrm{P}(\mathrm{B})=1 / 6, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=1 / 9$, what is $\mathrm{P}(\mathrm{AUB})$?
We know that $\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.
So $\mathrm{P}(\mathrm{AUB})=2 / 3+1 / 6-1 / 9=9 / 18+3 / 18-2 / 18=10 / 18=5 / 9$

2.2

The probability that at least one of E or F occurs, $\mathrm{P}(\mathrm{E} \mathrm{UF})=3 / 4$. We wish to find We wish to find the probability that neither E nor F occurs, i.e. P($\left.E^{\prime} \cap F^{\prime}\right)$.
By deMorgan's Law, $E^{\prime} \cap F^{\prime}=(E U F)^{\prime}=1-P(E U F)=1-3 / 4=1 / 4$.

2.4

The probability that of A, B, and C, A alone occurs $=P\left(A \cap\left(B^{\prime} \cap C^{\prime}\right)\right)$
$=\mathrm{P}\left(\left(\mathrm{A}^{\prime} \mathrm{U}\right.\right.$ B U C)') deMorgan's law
$=1-P\left(A^{\prime} U(B U C)\right)\left(\right.$ since $P\left(E^{\prime}\right)=1-P(E)$
$=1-\left[P\left(A^{\prime}\right)+P(B U C)-P\left(A^{\prime} \cap(B U C)\right]\right.$ probability of an "or"
$\left(^{*}\right)=\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\prime} \cap(\mathrm{B} \mathrm{U} \mathrm{C})\right)-\mathrm{P}(\mathrm{B} \mathrm{U} \mathrm{C})$ (replacing $\mathrm{P}\left(\mathrm{A}^{\prime}\right)$ with 1-P(A) and rearranging
Now, A and A' are clearly disjoint, and therefore A and $A^{\prime} \cap(B \cup C)$ must also be disjoint. Furthermore, $\mathrm{A} U \mathrm{~A}^{\prime}$ is the entire sample space, so we can write
$\mathrm{P}(\mathrm{A} U B \mathrm{U})=\mathrm{P}\left(\left(\mathrm{A} U \mathrm{~A}^{\prime}\right) \cap(\mathrm{A} U B \mathrm{U})\right)=\mathrm{P}\left(\mathrm{A} \mathrm{U}\left[\mathrm{A}^{\prime} \cap(\mathrm{B} \mathrm{U} \mathrm{C})\right]\right)$
$=P(A)+P\left(A^{\prime} \cap(B U C)\right.$.
Substituting this into (*), we get
$P\left(A \cap B^{\prime} \cap C^{\prime}\right)=P(A U B U C)-P(B U C)$. Finally, since
$P(B U C)=P(B)+P(C)-P(B \cap C)$, we end up with
$\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)=\mathrm{P}(\mathrm{A} U \mathrm{~B} U \mathrm{C})-\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{B} \cap \mathrm{C})$
2.9

A: throw tails exactly 2 times: HTT THT TTH
B: throw tails at least 2 times: HTT THT TTH TTT
C: tails did not appear before a head appeared: HHH HTH HHT HTT
D: first result is a tail: THH THT TTH TTT
2.13:

Could get:
a,b a,c a,d
b,a b,c b,d
c, a c, b c,d
d,a d,b d, c

a	b	c	d
a 0	$1 / 12$	$1 / 12$	$1 / 12$
b $1 / 12$	0	$1 / 12$	$1 / 12$
c $1 / 12$	$1 / 12$	0	$1 / 12$
d 1.12	1.12	1.12	0

