2.1

Given that P(A) = 2/3, P(B) = 1/6, $P(A \cap B) = 1/9$, what is P(AUB)?

We know that $P(AUB) = P(A) + P(B) - P(A \cap B)$. So P(AUB) = 2/3 + 1/6 - 1/9 = 9/18 + 3/18 - 2/18 = 10/18 = 5/9

2.2

The probability that at least one of E or F occurs, $P(E \cup F) = \frac{3}{4}$. We wish to find We wish to find the probability that neither E nor F occurs, i.e. $P(E' \cap F')$. By deMorgan's Law, $E' \cap F' = (E \cup F)' = 1 - P(E \cup F) = 1 - \frac{3}{4} = \frac{1}{4}$.

2.4

The probability that of A, B, and C, A alone occurs = $P(A \cap (B' \cap C'))$ =P((A' U B U C)') deMorgan's law =1 - P(A' U (B U C)) (since P(E') = 1-P(E) =1 - [P(A') + P(B U C) - P(A' \cap (B U C)] probability of an "or" (*) = P(A) + P(A' \cap (B U C)) - P(B U C) (replacing P(A') with 1-P(A) and rearranging Now, A and A' are clearly disjoint, and therefore A and A' ∩ (B U C) must also be disjoint. Furthermore, A U A' is the entire sample space, so we can write P(A U B U C) = P((A U A') ∩ (A U B U C)) = P(A U [A' ∩ (B U C)]) = P(A) + P(A' ∩ (B U C). Substituting this into (*), we get P(A ∩ B' ∩ C') = P(A U B U C) - P(B ∪ C). Finally, since P(B U C) = P(B) + P(C) - P(B ∩ C), we end up with P(A ∩ B' ∩ C') = P(A U B U C) - P(B) - P(C) + P(B ∩ C)

2.9

A: throw tails exactly 2 times: HTT THT TTH B: throw tails at least 2 times: HTT THT TTH TTT C: tails did not appear before a head appeared: HHH HTH HHT HTT D: first result is a tail: THH THT TTH TTT

2.13: Could get: a,b a,c a,d b,a b,c b,d c,a c,b c,d d,a d,b d,c

а	b	с	d	
a 0	1/12	1/12	1/12	
b 1/12	0	1/12	1/12	
c 1/12	1/12	0	1/12	
d 1.12	1.12	1.12	0	